128 research outputs found

    Ettingshausen effect due to Majorana modes

    Get PDF
    The presence of Majorana zero-energy modes at vortex cores in a topological superconductor implies that each vortex carries an extra entropy s0s_0, given by (kB/2)ln⁑2(k_{B}/2)\ln 2, that is independent of temperature. By utilizing this special property of Majorana modes, the edges of a topological superconductor can be cooled (or heated) by the motion of the vortices across the edges. As vortices flow in the transverse direction with respect to an external imposed supercurrent, due to the Lorentz force, a thermoelectric effect analogous to the Ettingshausen effect is expected to occur between opposing edges. We propose an experiment to observe this thermoelectric effect, which could directly probe the intrinsic entropy of Majorana zero-energy modes.Comment: 16 pages, 3 figure

    Vertex Models and Random Labyrinths: Phase Diagrams for Ice-type Vertex Models

    Full text link
    We propose a simple geometric recipe for constructing phase diagrams for a general class of vertex models obeying the ice rule. The disordered phase maps onto the intersecting loop model which is interesting in its own right and is related to several other statistical mechanical models. This mapping is also useful in understanding some ordered phases of these vertex models as they correspond to the polymer loop models with cross-links in their vulcanised phase.Comment: 8 pages, 6 figure

    On the Current Carried by `Neutral' Quasiparticles

    Full text link
    The current should be proportional to the momentum in a Galilean-invariant system of particles of fixed charge-to-mass ratio, such as an electron liquid in jellium. However, strongly-interacting electron systems can have phases characterized by broken symmetry or fractionalization. Such phases can have neutral excitations which can presumably carry momentum but not current. In this paper, we show that there is no contradiction: `neutral' excitations {\em do} carry current in a Galilean-invariant system of particles of fixed charge-to-mass ratio. This is explicitly demonstrated in the context of spin waves, the Bogoliubov-de Gennes quasiparticles of a superconductor, the one-dimensional electron gas, and spin-charge separated systems in 2+1 dimensions. We discuss the implications for more realistic systems, which are not Galilean-invariant

    Parafermionic edge zero modes in Z_n-invariant spin chains

    Full text link
    A sign of topological order in a gapped one-dimensional quantum chain is the existence of edge zero modes. These occur in the Z_2-invariant Ising/Majorana chain, where they can be understood using free-fermion techniques. Here I discuss their presence in spin chains with Z_n symmetry, and prove that for appropriate coupling they are exact, even in this strongly interacting system. These modes are naturally expressed in terms of parafermions, generalizations of fermions to the Z_n case. I show that parafermionic edge zero modes do not occur in the usual ferromagnetic and antiferromagnetic cases, but rather only when the interactions are chiral, so that spatial-parity and time-reversal symmetries are broken.Comment: 22 pages. v2: small changes, added reference

    Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples

    Get PDF
    Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 Β΅mΓ—50 Β΅mΓ—2.5 Β΅m. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy

    Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones

    Get PDF
    Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled
    • …
    corecore